Catalog Description: Topics in mathematics such as arithmetic operations, basic algebraic concepts and notation, geometry, and real and complex number systems. Will not meet graduation requirements, Lab component required.

Lecture hours = 3, Lab hours = 1

Prerequisites: Placement Score

Semester Credit Hours: 3
Lecture Hours per Week: 3
Lab Hours per Week: 1
Extended hours: 16 Additional study is required outside posted class times.
Contact Hours per Semester: 64
State Approval Code: 32.0104.51 19

Core Components and Related College Student Learning Outcomes
This course counts as part of the academic requirements of the Panola College Core Curriculum and an Associate of Arts or Associate of Science degree. ☑ Yes ☐ No: If no, skip to Instructional Goals.

The items below marked with an X reflect the state-mandated outcomes for this course IF this is a CORE course:

☑ Critical Thinking Skills – to include creative thinking, innovation, inquiry and analysis, evaluation and syntheses of information
 ☐ CT1: Generate and communicate ideas by combining, changing, or reapplying existing information
 ☐ CT2: Gather and assess information relevant to a question
 ☐ CT3: Analyze, evaluate, and synthesize information

☒ Communication Skills – to include effective development, interpretation, and expression of ideas through written, oral, and visual communication
 ☐ CS1: Develop, interpret, and express ideas through written communication
 ☐ CS2: Develop, interpret, and express ideas through oral communication
 ☐ CS3: Develop, interpret, and express ideas through visual communication

☐ Empirical and Quantitative Skills – to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions
 ☐ EQS1: Manipulate and analyze numerical data and arrive at an informed conclusion
Instructional Goals and Purposes:
The purpose of this course is to increase academic proficiency in expression of mathematical solutions, mathematical reasoning and mathematical understanding.

Learning Outcomes:
Upon successful completion of this course, students will:

1. Define, represent, and perform operations on real and complex numbers.
2. Recognize, understand, and analyze features of a function.
3. Recognize and use algebraic (field) properties, concepts, procedures (including factoring), and algorithms to combine, transform, and evaluate absolute value, polynomial, radical, and rational expressions.
4. Identify and solve absolute value, polynomial, radical, and rational equations.
5. Identify and solve absolute value and linear inequalities.
7. Connect and use multiple strands of mathematics in situations and problems, as well as in the study of other disciplines

Course Content:
Students in all sections of this course will learn the following content:

The objectives for this course are aligned with the Texas College Readiness Standards as adopted by the Texas Higher Education Coordinating Board.

1. **Numeric Reasoning**
 a. To perform computations with and to compare real numbers.
 b. To use estimation to check for errors and reasonableness of solutions.

2. **Algebraic Reasoning**
 a. To explain and differentiate between expressions and equations using words such as “solve”, “evaluate”, and “simplify”.
 b. To recognize and use algebraic field properties, concepts, procedures, and algorithms to combine, transform, and evaluate expressions.
c. To explain the difference between the solution set of an equation and the solution set of an inequality.
d. To recognize and use algebraic field properties, concepts, procedures, and algorithms to solve equations.
e. To interpret multiple representations of equations and relationships.
f. translate among multiple representations of equations and relationships.

3. Geometric Reasoning
 a. To recognize and apply right triangle relationships.
 b. To make connections between geometry and algebra.

4. Measurement Reasoning
 a. To find the perimeter and area of two-dimensional figures.
 b. To determine indirect measurements of figures using Pythagorean Theorem.

5. Functions
 a. To recognize whether a relation is a function.
 b. To recognize and distinguish between linear and quadratic functions.
 c. To understand and analyze features of a function.
 d. To algebraically construct and analyze linear and quadratic functions.
 e. To apply linear and quadratic function models to real-world situations.
 f. To develop a linear or quadratic function to model a situation.

6. Problem Solving and Reasoning
 a. To analyze given information, formulate a plan or strategy, determine a solution, justify the solution, and evaluate the problem-solving process.
 b. To formulate a solution to a real-world situation based on the solution to a mathematical problem.
 c. To use a function to model a real-world situation.

7. Communication and Representation
 a. To use mathematical symbols, terminology, and notation to represent given and unknown information in a problem.
 b. To use mathematical language to represent and communicate the mathematical concepts in a problem.
 c. To use mathematics as a language for reasoning, problem solving, making connections, and generalizing.
 d. To model and interpret mathematical ideas and concepts using multiple representations.
 e. To summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
 f. To communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, graphs, and words.
 g. To create and use representations to organize, record, and communicate mathematical ideas.
 h. To explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.

8. Connections
 a. To connect and use multiple strands of mathematics in situations and problems.
 b. To connect mathematics to the study of other disciplines.
 c. To use multiple representations to demonstrate links between mathematical and real-world situations.
 d. To know and understand the use of mathematics in a variety of careers and professions.

Methods of Instruction/Course Format/Delivery:
Methods of Instruction/Course Format/Delivery: Methods employed will include Lecture/demonstration, discussion, problem solving, analysis, and reading assignments. Homework will be assigned. Faculty may choose from, but are not limited to, the following methods of instruction:

1. Lecture
2. Discussion
3. Internet
4. Video
5. Television
6. Demonstrations
7. Field trips
8. Collaboration
9. Readings

Major Assignments/Assessment:

Faculty may assign both in- and out-of-class activities to evaluate students' knowledge and abilities. Faculty may choose from – but are not limited to -- the following methods attendance, class preparedness and participation. Collaborative learning projects, exams/tests/quizzes, homework, internet, library assignments, readings, research papers, scientific observations, student-teacher conferences, and written assignments.

Assessment(s):

1. Exam per Chapter
2. Comprehensive Final Exam

Course Grade:

<table>
<thead>
<tr>
<th>Assignment Weights</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Participation</td>
<td>5%</td>
</tr>
<tr>
<td>Homework/Quiz Average</td>
<td>20%</td>
</tr>
<tr>
<td>Exams</td>
<td>50%</td>
</tr>
<tr>
<td>Comprehensive Final Exam</td>
<td>25%</td>
</tr>
</tbody>
</table>

Letter Grades for the Course will be assigned as follows:

A: 90 < Average < 100
B: 80 < Average < 90
C: 70 < Average < 80
D: 60 < Average < 70
F: 00 < Average < 60
Q: Repeat course in next long semester or pass TSI before. Repeated class will receive grade earned, “Q” will not be amended. Students who are TSI deficient in two or more areas may not skip a semester if a grade of “Q” is attributed. “Q” can only occur once per developmental course.

“Q” Requirements:

1. Must have no more than 5 absences to a MWF class or no more than 3 absences to a TR class.
2. Must have attended at least 90% of the required math lab time.
3. Must have no more than 5 unresolved tardy marks.
4. Must have completed at least 90% of assigned work.
5. Must not have violated the Academic Dishonesty policy published in each Developmental Education Syllabi.

TEXAS SUCCESS INITIATIVE (TSI): You must have a C or better to complete your TSI requirements or pass the MATH Section of the New TSI Assessment. Students who pass the MATH Section of the New TSI Assessment can choose to withdraw from the course immediately and receive either their current grade or a W or they may choose to finish the semester and receive the grade earned based on the grading schedule. You must have a C or better to complete your TSI requirements.

Texts, Materials, and Supplies:

- MyMathLab Access Code
- Canvas Access
- Scientific Calculator

Other:

- For current texts and materials, use the following link to access bookstore listings: http://www.panolacollegestore.com
- For testing services, use the following link: http://www.panola.edu/elearning/testing.html
- If any student in this class has special classroom or testing needs because of a physical learning or emotional condition, please contact the ADA Student Coordinator in Support Services located in the Administration Building or go to http://www.panola.edu/student-success/disability-support-services/ for more information.
- Withdrawing from a course is the student’s responsibility. Students who do not attend class and who do not withdraw will receive the grade earned for the course.