Course Syllabus

CHEM 2423 – Organic Chemistry I

Revision Date: 8/19/2013

Catalog Description: Fundamental principles of organic chemistry will be studied, including the structure, bonding, properties, and reactivity of organic molecules; and properties and behavior of organic compounds and their derivatives. Emphasis is placed on organic synthesis and mechanisms. Includes study of covalent and ionic bonding, nomenclature, stereochemistry, structure and reactivity, reaction mechanisms, functional groups, and synthesis of simple molecules. THIS COURSE IS INTENDED FOR STUDENTS IN SCIENCE OR PRE-PROFESSIONAL PROGRAMS.

Lecture hours = 3 Lab hours = 3

Prerequisites: CHEM 1312 and CHEM 1112, or CHEM 1412 General Chemistry II (Lecture and Laboratory)

Semester Credit Hours: 4
Lecture Hours per Week: 3
Lab Hours per Week: 3
Contact Hours per Semester: 112
State Approval Code: 40.0504.52 03

Core Components and Related College Student Learning Outcomes
This course counts as part of the academic requirements of the Panola College Core Curriculum and an Associate of Arts or Associate of Science degree. ☐ Yes ☑ No: If no, skip to Instructional Goals.

The items below marked with an X reflect the state-mandated outcomes for this course IF this is a CORE course:

☐ Critical Thinking Skills – to include creative thinking, innovation, inquiry and analysis, evaluation and syntheses of information
 □ CT1: Generate and communicate ideas by combining, changing, or reapplying existing information
 □ CT2: Gather and assess information relevant to a question
 □ CT3: Analyze, evaluate, and synthesize information

☐ Communication Skills – to include effective development, interpretation, and expression of ideas through written, oral, and visual communication
 □ CS1: Develop, interpret, and express ideas through written communication
 □ CS2: Develop, interpret, and express ideas through oral communication
 □ CS3: Develop, interpret, and express ideas through visual communication

☐ Empirical and Quantitative Skills – to include the manipulation and analysis of numerical data or
observable facts resulting in informed conclusions

☐ EQS1: Manipulate and analyze numerical data and arrive at an informed conclusion
☐ EQS2: Manipulate and analyze observable facts and arrive at an informed conclusion

☐ Teamwork – to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal
☐ TW1: Integrate different viewpoints as a member of a team
☐ TW2: Work with others to support and accomplish a shared goal

☐ Personal Responsibility – to include the ability to connect choices, actions, and consequences to ethical decision-making
☐ PR1: Evaluate choices and actions and relate consequences to decision-making

☐ Social Responsibility – to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities
☐ SR1: Demonstrate intercultural competence
☐ SR2: Identify civic responsibility
☐ SR3: Engage in regional, national, and global communities

Instructional Goals and Purposes:

Organic Chemistry is a two semester sophomore level course in the study of organic compounds and reactions. The first semester, Chemistry 2423, provides a review of relevant topics from General Chemistry and then proceeds through the nomenclature and reactions of the hydrocarbons and halohydrocarbons. Stereochemistry and instrumental methods of structure determination are also included. At the end of the semester, benzene and its derivatives are studied in a natural progression subsequent to studying conjugated dienes, completing the last homologous series. Logical problem solving is an integral part of the course at all levels. Both semesters have a required laboratory component for credit. The laboratory meets once a week for four hours, with options for additional time, as needed. Laboratory exercises include experiments primarily to illustrate technique, experiments to perform synthesis and analysis, and exercises to provide experience in model development for both structure and theory. The lab is well equipped, with instruments for spectroscopy and chromatography experiments. A formal laboratory notebook is kept by each student. There is heavy emphasis on safety, proper handling and waste disposal of chemicals.

General Course Objectives:
1. Understand and be able to explain the general principles, laws, and theories of chemistry that are discussed and presented throughout the semester
2. Use critical thinking and logic in the solution of problems
3. Apply learned chemistry skills to new situations
4. Demonstrate an understanding of chemistry through technological advancement
5. Apply chemical principles in the laboratory setting
6. Develop independent and cooperative learning skills
7. Recognize and acquire attitudes that are characteristic of the successful worker regardless of the major field of study
8. Develop an awareness of the value of chemistry in our daily living
Learning Outcomes: [from the ACGM catalog]
After studying all materials and resources presented in the course, the student will be able to:

1. Classify organic compounds by structure, molecular orbitals, hybridization, resonance, tautomerism, polarity, chirality, conformation, and functionality.

2. Identify organic molecules using appropriate organic nomenclature.

3. Describe the principle reactions for syntheses of molecules, ions, and radicals.

4. Describe organic reactions in terms of radical and ionic mechanisms.

5. Describe the use of spectroscopic data to determine the structure of organic molecules.

6. Formulate appropriate reaction conditions for the synthesis of simple organic molecules.

7. Perform chemical experiments, analysis procedures, and waste disposal in a safe and responsible manner.

8. Utilize scientific tools such as glassware and analytical instruments to collect and analyze data.

9. Identify and utilize appropriate separation techniques such as distillation, extraction, and chromatography to purify organic compounds.

10. Record experimental work completely and accurately in laboratory notebooks, and communicate experimental results clearly in written reports.

11. Demonstrate a basic understanding of stereochemistry.

12. Classify organic compounds by structure, molecular orbitals, hybridization, resonance, tautomerism, polarity, chirality, conformation, and functionality in laboratory reports.

13. Identify organic molecules using appropriate organic nomenclature in laboratory reports.

15. Describe organic reactions in terms of radical and ionic mechanisms in laboratory reports.

16. Use spectroscopic data to determine the structure of organic molecules.

17. Formulate appropriate reaction conditions for the synthesis of simple organic molecules.

Course Content:
Students in all sections of this course will learn the following content:

1. Describe the development of the structure of compounds using atomic orbitals, bonding theories, molecular orbitals, and hybridization.

2. Use orbital descriptions to predict molecular geometries.

3. State and apply LeChatelier’s Principle, the Arrhenius equation, the Lewis theory of acids and bases, and the Henderson-Hasselbach equation.

4. Name and identify isomers of alkanes, alkenes, alkynes, and cyclic compounds.
5. Describe conformations of chain, cyclic, and polycyclic molecules.

6. Describe detailed mechanisms for common reactions: addition, elimination, substitution, free radical, and condensation.

7. Describe industrial and laboratory preparation of important chemicals.

8. Define optical activity and discuss the significance of chirality; draw and identify Fischer projections.

9. Describe reactions of the alkyl halides and use as a model to discuss S_N1, S_N2, E1, E2.

10. Describe the critical features of molecular structure specific to various instrumental analyses: mass spectrometry, IR, UV, GC, NMR.

11. Discuss the structure and reactivity significance of conjugated double bonds.

12. Discuss the chemistry of color and vision.

13. Describe the electronic and molecular structure of benzene and relate to typical reactions.

14. Name, identify, and state common uses for derivatives of benzene.

15. State and describe specific laboratory, biological, and environmental chemical hazards of frequently used chemicals, such as benzene, methanol, ether, phenol, etc.

Methods of Instruction/Course Format/Delivery: Lecture, class discussion, lecture activities, canvas quizzes, reading and homework problem assignments, and laboratory experimentation

Assessment:

1. **Homework** - completion of assigned reading and problems from the textbook
2. **Lecture Activities** – participation in classroom discussions and practice problems, completion of quizzes
3. **Laboratory Experiments** – Laboratory experiments are to be completed each week during the laboratory period. Participation in the experiment is worth 40 points. A quiz about each experiment is given at the beginning of the lab period each week and is worth 10 points. Laboratory reports are due by the end of the lab period and are worth 50 points.
4. **Unit Exams** – Four unit exams are given throughout the semester that are worth 100 points each. No one coming in late may start an exam after the first person has left. One unit exam may be made up at the end of the semester at a time designated by the instructor.
5. **Final Exam** – completion of a comprehensive test at the end of the semester

Course Grade:

The grade for this course will be based on...

1. Homework and lecture activities 20%
2. Labs 25%
3. Unit Exams 40%
4. Final Exam 15%
Letter grades are as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 - 100</td>
</tr>
<tr>
<td>B</td>
<td>80 - 89</td>
</tr>
<tr>
<td>C</td>
<td>70 - 79</td>
</tr>
<tr>
<td>D</td>
<td>60 - 69</td>
</tr>
<tr>
<td>F</td>
<td>Below 60</td>
</tr>
</tbody>
</table>

Texts, Materials, and Supplies:
2. Sapling Learning (homework registration necessary for online homework)
4. *Laboratory Notebook*
5. SCIENTIFIC CALCULATOR (no cell phones) (it does NOT need to be graphing)

Other:
- For current texts and materials, use the following link to access bookstore listings: http://www.panolacollegestore.com
- For testing services, use the following link: http://www.panola.edu/elearning/testing.html
- If any student in this class has special classroom or testing needs because of a physical learning or emotional condition, please contact the ADA Student Coordinator in Support Services located in the Administration Building or go to http://www.panola.edu/student-success/disability-support-services/ for more information.
- Withdrawing from a course is the student’s responsibility. Students who do not attend class and who do not withdraw will receive the grade earned for the course.